The Paper Throat: A Lo-fi, DIY Laryngoscopy Simulator


Laryngoscopy involves a series of unnatural movements and hand-eye skills that are not easily learned while simultaneously caring for a dying patient. The Paper Throat is a low fidelity but high yield direct laryngoscopy training tool that is easily assembled and practiced. The hope is that routine use will generate laryngoscopy muscle memory so that training providers can focus on other aspects of airway management when called upon to intubate IRL.

Conceived and produced by Jonas Pologe.

Pulse Ox Lag

Folks put a lot of stock in the pulse oximeter, as they should, because the pulse ox is an awesome feat of engineering and patient safety. But the pulse ox lags.

Here, the inestimable Dr. Jonas Pologe (rhymes with apology) demonstrates pulse ox lag with a breath hold.

Breath hold starts at 0:11, sat is 100%
Saturation starts to drop at 0:48
Breathing commences at 1:25, sat is 82% at this point
Saturation continues to drop until 1:46, then recovers from its nadir of 77%
At 1:58, saturation reaches 100% again



1. When the sat is on its way down, the patient is more hypoxic than the pulse ox shows. This is another reason why, when laryngoscopy is not producing an acceptable view of the glottis, you should come out and reestablish ventilation/oxygenation earlier than you think. A more important reason to come out and bag early is described here.

2. When you are reestablishing oxygenation (using a bag mask, laryngeal mask, or endotracheal tube), do not use the pulse ox to judge the adequacy of ventilation, use capnography. That means the capnogram should be attached to the bag mask/LMA/ETT before the first breath is given. If the capnogram is good, ventilation is good, and the pulse ox will catch up, so relax and stop bagging so quickly.

Petition to retire the surviving sepsis campaign guidelines


Concern regarding the Surviving Sepsis Campaign (SSC) guidelines dates back to their inception.  Guideline development was sponsored by Eli Lilly and Edwards Life Sciences as part of a commercial marketing campaign (1).  Throughout its history, the SSC has a track record of conflicts of interest, making strong recommendations based on weak evidence, and being poorly responsive to new evidence (2-6).

The original backbone of the guidelines was a single-center trial by Rivers defining a protocol for early goal-directed therapy (7).  Even after key elements of the Rivers protocol were disproven, the SSC continued to recommend them.  For example, SSC continued to recommend the use of central venous pressure and mixed venous oxygen saturation after the emergence of evidence that they were nonbeneficial (including the PROCESS and ARISE trials).  These interventions eventually fell out of favor, despite the slow response of SSC that delayed knowledge translation.

SSC has been sponsored by Eli Lilly, manufacturer of Activated Protein C.  The guidelines continued recommending Activated Protein C until it was pulled from international markets in 2011.  For example, the 2008 Guidelines recommended this, despite ongoing controversy and the emergence of neutral trials at that time (8,9).  Notably, 11 of 24 guideline authors had financial conflicts of interest with Eli Lilly (10).

The Infectious Disease Society of America (IDSA) refused to endorse the SSC because of a suboptimal rating system and industry sponsorship (1).  The IDSA has enormous experience in treating infection and creating guidelines.  Septic patients deserve a set of guidelines that meet the IDSA standards.

Guidelines should summarize evidence and provide recommendations to clinicians.  Unfortunately, the SSC doesn’t seem to trust clinicians to exercise judgement.  The guidelines infantilize clinicians by prescribing a rigid set of bundles which mandate specific interventions within fixed time frames (example above)(10).  These recommendations are mostly arbitrary and unsupported by evidence (11,12).  Nonetheless, they have been adopted by the Centers for Medicare & Medicaid Services as a core measure (SEP-1).  This pressures physicians to administer treatments despite their best medical judgment (e.g. fluid bolus for a patient with clinically obvious volume overload).

We have attempted to discuss these issues with the SSC in a variety of forums, ranging from personal communications to formal publications (13-15).  We have tried to illuminate deficiencies in the SSC bundles and the consequent SEP-1 core measures.  Our arguments have fallen on deaf ears.

We have waited patiently for years in hopes that the guidelines would improve, but they have not.  The 2018 SSC update is actually worse than prior guidelines, requiring the initiation of antibiotics and 30 cc/kg fluid bolus within merely sixty minutes of emergency department triage (16).  These recommendations are arbitrary and dangerous.  They will likely cause hasty management decisions, inappropriate fluid administration, and indiscriminate use of broad-spectrum antibiotics.  We have been down this path before with other guidelines that required antibiotics for pneumonia within four hours, a recommendation that harmed patients and was eventually withdrawn (17).

It is increasingly clear that the SSC guidelines are an impediment to providing the best possible care to our septic patients.  The rigid framework mandated by SSC doesn’t help experienced clinicians provide tailored therapy to their patients.  Furthermore, the hegemony of these guidelines prevents other societies from developing better guidelines.

We are therefore petitioning for the retirement of the SSC guidelines.  In its place, we would call for the development of separate sepsis guidelines by the United States, Europe, ANZICS, and likely other locales as well.  There has been a monopoly on sepsis guidelines for too long, leading to stagnation and dogmatism.  We would hope that these new guidelines are written by collaborations of the appropriate professional societies, based on the highest evidentiary standards.  The existence of several competing sepsis guidelines could promote a diversity of opinions, regional adaptation, and flexible thinking about different approaches to sepsis.

We are disseminating an international petition that will allow clinicians to express their displeasure and concern over these guidelines.  If you believe that our septic patients deserve more evidence-based guidelines, please stand with us.


Scott Aberegg MD MPH

Jennifer Beck-Esmay MD

Steven Carroll DO MEd

Joshua Farkas MD

Jon-Emile Kenny MD

Alex Koyfman MD

Michelle Lin MD

Brit Long MD

Manu Malbrain MD PhD

Paul Marik MD

Ken Milne MD

Justin Morgenstern MD

Segun Olusanya MD

Salim Rezaie MD

Philippe Rola MD

Manpreet Singh MD

Rory Speigel MD

Reuben Strayer MD

Anand Swaminathan MD

Adam Thomas MD

Scott Weingart MD

Lauren Westafer DO MPH

  1. Eichacker PQ, Natanson C, Danner RL. Surviving Sepsis – Practice guidelines, marketing campaigns, and Eli Lilly.  New England Journal of Medicine  2006; 16: 1640-1642.
  2. Pepper DJ, Jaswal D, Sun J, Welsch J, Natanson C, Eichacker PQ. Evidence underpinning the Centers for Medicare & Medicaid Services’ Severe Sepsis and Septic Shock Management Bundle (SEP-1): A systematic review.  Annals of Internal Medicine 2018; 168: 558-568.
  3. Finfer S. The Surviving Sepsis Campaign:  Robust evaluation and high-quality primary research is still needed.  Intensive Care Medicine  2010; 36:  187-189.
  4. Salluh JIF, Bozza PT, Bozza FA. Surviving sepsis campaign:  A critical reappraisal.  Shock 2008; 30: 70-72.
  5. Eichacker PQ, Natanson C, Danner RL. Separating practice guidelines from pharmaceutical marketing.  Critical Care Medicine 2007; 35:  2877-2878.
  6. Hicks P, Cooper DJ, Webb S, Myburgh J, Sppelt I, Peake S, Joyce C, Stephens D, Turner A, French C, Hart G, Jenkins I, Burrell A.The Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008.  An assessment by the Australian and New Zealand Intensive Care Society.  Anaesthesia and Intensive Care 2008; 36: 149-151.
  7. Rivers ME et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock.  New England Journal of Medicine 2001; 345: 1368-1377.
  8. Wenzel RP, Edmond MB. Septic shock – Evaluating another failed treatment.  New England Journal of Medicine 2012; 366: 2122-2124.
  9. Savel RH, Munro CL. Evidence-based backlash:  The tale of drotrecogin alfa.  American Journal of Critical Care  2012; 21: 81-83.
  10. Dellinger RP, Levy MM, Carlet JM et al. Surviving sepsis campaign:  International guidelines for management of severe sepsis and septic shock:    Intensive Care Medicine 2008; 34:  17-60.
  11. Allison MG, Schenkel SM. SEP-1: A sepsis measure in need of resuscitation?  Annals of Emergency Medicine 2018; 71: 18-20.
  12. Barochia AV, Xizhong C, Eichacker PQ. The Surviving Sepsis Campaign’s revised sepsis bundles.  Current Infectious Disease Reports 2013; 15: 385-393.
  13. Marik PE, Malbrain MLNG. The SEP-1 quality mandate may be harmful: How to drown a patient with 30 ml per kg fluid! Anesthesiology and Intensive Therapy 2017; 49(5) 323-328.
  14. Faust JS, Weingart SD. The past, present, and future of the centers for Medicare and Medicaid Services quality measure SEP-1:  The early management bundle for severe sepsis/septic shock.  Emergency Medicine Clinics of North America 2017; 35: 219-231.
  15. Marik PE. Surviving sepsis:  going beyond the guidelines.  Annals of Intensive Care 2011; 1: 17.
  16. Levy MM, Evans LE, Rhodes A. The surviving sepsis campaign bundle:  2018 update. Intensive Care Medicine. Electronic publication ahead of print, PMID 29675566.
  17. Kanwar M, Brar N, Khatib R, Fakih MG. Misdiagnosis of community-acquired pneumonia and inappropriate utilization of antibiotics: side effects of the 4-h antibiotic administration rule.  Chest 2007; 131: 1865-1869.

CPR Induced Consciousness: 30 Second Video


An 82 year old healthy and high functioning gentleman had been feeling unwell for several days with progressive dyspnea. He walked into the emergency department with his son, sat down in a chair in ambulatory triage and promptly became unresponsive. He was wheeled into the resus bay where he was apneic and pulseless with a PEA rhythm. Cardiac arrest care included chest compressions, laryngeal mask ventilation, epinephrine, calcium, and bicarbonate, without ROSC. Ultrasound initially showed no cardiac activity which progressed to minimal cardiac activity without palpable pulses, ECG demonstrated ST elevations in V1 and V2. 50 mg alteplase was given without improvement of echo or ROSC; a second 50 mg dose was given 15 minutes later which also had no discernible effect.

Throughout the period of cardiac arrest care, including during periods of cardiac standstill, the patient became awake during chest compressions and opened his eyes, tracked staff, made purposeful movements toward the laryngeal tube and toward the person doing chest compressions as well as flailing, distressed lower extremity movements. 100 mg ketamine was given to good effect, repeated once. After 75 minutes, the decision was made with the patient’s son that further resuscitative efforts were unlikely to be successful. Chest compressions were halted, and the patient was pronounced deceased.


CPR-induced consciousness (CPRIC) was described in Lewinter’s 1989 case report out of Henry Ford Hospital; the authors were more concerned with competing models of chest compression physiology and venoarterial carbon dioxide gradients but report that “forward blood flow produced was sufficient to maintain consciousness.”  CPRIC was more explicitly addressed in 1994 by Quinn and his colleagues at the University of Ottawa who were studying an active compression-decompression device but conclude with a question:

“Is it inhumane to do CPR without sedation or analgesia? These agents were used in our case because of the need to restrain the patient and to facilitate intubation. Are there other patients who are aware of the resuscitation, but who cannot express their fears or discomfort?” 

One of the papers’ reviewers comments:

“The details of the patient’s resuscitation reflect several interventions that should be questioned. First, the large dose of midazolam administered may have reduced vasomotor tone and reduced coronary perfusion pressure.”

to which the authors respond:

“To paralyze and not sedate our patient would have been inhumane. Midazolam was used for sedation because it has less myocardial depressant effects than thiopental. Ketamine would have been the best choice in hindsight.”

We may never know how frequently cardiac arrest patients are aware during resuscitation, because few cardiac arrest patients live to tell the tale, however 2% of cardiac arrest survivors in the subtly-named AWARE study described visual awareness during cardiac arrest. In 2008, Bihari & Rajajee described CPRIC in the ICU and declare:

“While concerns about the adverse effects of sedative and analgesic medications in such a situation may have merit, it is worthwhile to consider that a patient in this situation is quite unlikely to survive despite maximal resuscitative efforts…Alleviating pain and suffering at this likely terminal stage should outweigh concerns about potential side effects.”

The incidence of CPR-induced consciousness seems to be increasing and at least one investigator is making it a clinical niche with three papers so far in press. The best of these is a registry study of 112 prehospital cases of CPRIC showing a 0.7% incidence, a weakly positive association between CPRIC and favorable patient outcomes, and a weakly negative association between the use of sedatives to treat CPRIC and favorable patient outcomes. A provider survey study described a prehospital scenario where “The patient was GCS 15 during CPR which was very unsettling for the crews involved. At one point the patient was begging us to stop as the CPR was hurting. He said ‘tell my family I love them and I’m ok with dying, please let me die.’”

Clinicians who care for cardiac arrest patients should be aware of–and have a plan for–CPRIC. Members of the resuscitation team may be alarmed by a patient who is conscious during chest compressions and should be reassured that this is a well-described phenomenon demonstrating the potential of high quality chest compressions and high quality cardiac arrest care to perfuse vital organs. As captured in the video, our patient was conscious during pulse checks (i.e. while chest compressions were paused), illustrating how perfusion pressures fall gradually following the cessation of cardiac output.

It seems inhumane to leave a patient awake while an artificial airway is in place and while the patient is receiving chest compressions, not to mention tube thoracostomy, pericardiocentesis, etc. Pound et al describe a patient so active during CPR that he was able to significantly interfere with resuscitative efforts. Most CPRIC authors recommend intra-arrest sedation with midazolam or ketamine; one group proposes a CPRIC sedation protocol.

After the decision was made with family to terminate resuscitation, our patient was allowed to emerge from ketamine dissociation to say goodbye to his loved ones while at least partially conscious. This emotionally charged circumstance has not been previously described but may merit further consideration as cardiac arrest care improves and CPR-induced consciousness becomes more common.

Thank you to the patient’s relatives and the clinicians who consented to the distribution of video footage for educational purposes.

Jon Cole on Ketamine for Agitation

Neill Slide

NEJM Journal Watch recently reviewed Jon Cole’s study on intramuscular ketamine for severe agitation; the title of their review is IM Ketamine Is Not a Good First-Line Option for Severely Agitated Patients. From their comment:

…An intubation rate of 57% is not acceptable, and there are many alternatives for sedation of the agitated patient. These findings cast a shadow on the otherwise excellent safety profile of ketamine, and reinforce our prior conclusion that IM ketamine is not a good first-line agent for sedation of agitated patients.

Dr. Cole and I discussed his data when it became available, about 2 years ago. Here are some of his comments, at that time:

There is no question dealing with a dissociated patient is a challenge for some EM docs. It is my personal practice to observe them for a short period and reassess them (ideally letting them emerge), however there are times when the shift gets busy enough that I intubate them too because I simply don’t have time to watch their airway. We did see the intubation rate fall over time as the physicians got used to ketamine.

The intubation rate for the ultra-violent group was 57% – similarly high to the less violent group in the comparative study, suggesting the physicians were “treating the treatment” and not the underlying condition. As with the study population, the intubation rate in this group (AMSS +4) also fell over time as everyone’s comfort level rose. Also, not surprisingly, these patients used more drugs, were more likely to be male, and were far more acidemic. And despite that, their average time to adequate sedation was about 4.5 minutes. Not surprisingly 5 mg/kg of ketamine IM takes you down in about the same amount of time no matter how violent you are.

Among the investigators on our study who are faculty physicians in our ED, not one of us intubated a study patient. I also averted at least one intubation by stopping a resident from intubating a hypersalivating patient and simply administering some atropine. The intubation for “GCS 3K” was a very real phenomenon in our ED. Individual practice variation is also very real in our hospital. In a retrospective analysis of our practice prior to initiating our study, individual faculty physicians encountering 5 or more patients sedated with prehospital ketamine had personal intubation rates ranging from 0 to 100%. Immediately before beginning our ketamine versus haloperidol study, there were physicians in our group who told me a priori they would intubate every single AMSS +4 patient because “that’s my practice” – a variation on “intubation for GCS 3K” if you will. These physicians accounted for well over half the intubations. It is interesting to note one of these physicians works exclusively nights, and intubated 10 of the 49 patients. At the time, our other night-hawk physician who also worked exclusively nights (same number of shifts), intubated zero patients. 

This phenomenon where different physicians had completely disparate practices related to intubation is a weakness of open label trials like our ketamine studies. This could be mitigated by a blinded, randomized trial, but for several reasons that is not currently feasible. Physicians bring with them their own bias about how the patient should best be treated, as such it is my opinion one cannot use our intubation rate as a true outcome measure. Post-EMS ketamine intubation rates are almost certain to vary from one center to another, and between individual physicians.

Last, the other thing I never see written about is the role the physical stature of the medic plays in all of this. We have some medics who are 100 pounds, and some that are 250 pounds and compete at a high level in Cross Fit. Their perception of the same violent patient may be very different, which is why I think it’s OK for a 100 pound medic to be more liberal with IM ketamine.


Although many agitated patients in Cole’s study who received dissociative dose ketamine were intubated, it is clear that most of them did not need to be intubated–hundreds of thousands of patients have received ED-based procedural sedation with dissociative dose ketamine without being intubated. Of course the dangerously agitated patient is very different than the PSA patient and has many unknowns, and intubating these patients is often reasonable. So even if most severely agitated patients tranquilized with ketamine do require intubation–which they don’t–that would not be a good reason not to use ketamine for severe agitation, because ketamine is the most effective agent for severe agitation.

Ketamine should not be used for routine agitation, which comprises the vast majority of agitation in most settings, because ketamine-dissociated patients who are not intubated may develop hypoventilation and apnea and therefore require procedural sedation-level monitoring with an airway-capable provider at bedside. For routine agitation, use a conventional titratable sedative like haloperidol/droperidol and/or midazolam.

However there are two groups of agitated patients who should be managed with dissociative-dose intramuscular ketamine: uncontrollably violent patients, and severely agitated patients where there is a high concern for an immediately dangerous medical condition. What these two types of patients have in common is that in both cases, complete control must be achieved immediately and reliably; in the first group because of the threat the patient’s agitation poses to others, and in the second group because of the threat the patient’s agitation poses to himself (by not allowing an appropriate evaluation/resuscitation to occur). And there is no agent that calms an agitated patient as reliably and quickly as ketamine.

Lastly, as Jon alluded to, what constitutes uncontrollably violent depends on how much control can be exerted by the treatment team–if you are lucky enough to have a squad of large security guards at your disposal, you will need ketamine for tranquilization much less often than if you are not a big strong person and routinely confront agitated patients with only the assistance of your also not big strong partner, on ambulance in the middle of the night.

We are fortunate to be able to harness the pharmacologic miracle of dissociation, where patients are awake but unconscious, with ketamine. The benefits of dissociation exceed the risks in a very small number of agitated patients, but in those patients, to not use ketamine is a dangerous mistake.

And please do not use GCS as a reason to intubate, know your airway signs.

Slide credit Andy Neill; refers to Cole 2016 and Isbister 2016