CPR Induced Consciousness: 30 Second Video


An 82 year old healthy and high functioning gentleman had been feeling unwell for several days with progressive dyspnea. He walked into the emergency department with his son, sat down in a chair in ambulatory triage and promptly became unresponsive. He was wheeled into the resus bay where he was apneic and pulseless with a PEA rhythm. Cardiac arrest care included chest compressions, laryngeal mask ventilation, epinephrine, calcium, and bicarbonate, without ROSC. Ultrasound initially showed no cardiac activity which progressed to minimal cardiac activity without palpable pulses, ECG demonstrated ST elevations in V1 and V2. 50 mg alteplase was given without improvement of echo or ROSC; a second 50 mg dose was given 15 minutes later which also had no discernible effect.

Throughout the period of cardiac arrest care, including during periods of cardiac standstill, the patient became awake during chest compressions and opened his eyes, tracked staff, made purposeful movements toward the laryngeal tube and toward the person doing chest compressions as well as flailing, distressed lower extremity movements. 100 mg ketamine was given to good effect, repeated once. After 75 minutes, the decision was made with the patient’s son that further resuscitative efforts were unlikely to be successful. Chest compressions were halted, and the patient was pronounced deceased.


CPR-induced consciousness (CPRIC) was described in Lewinter’s 1989 case report out of Henry Ford Hospital; the authors were more concerned with competing models of chest compression physiology and venoarterial carbon dioxide gradients but report that “forward blood flow produced was sufficient to maintain consciousness.”  CPRIC was more explicitly addressed in 1994 by Quinn and his colleagues at the University of Ottawa who were studying an active compression-decompression device but conclude with a question:

“Is it inhumane to do CPR without sedation or analgesia? These agents were used in our case because of the need to restrain the patient and to facilitate intubation. Are there other patients who are aware of the resuscitation, but who cannot express their fears or discomfort?” 

One of the papers’ reviewers comments:

“The details of the patient’s resuscitation reflect several interventions that should be questioned. First, the large dose of midazolam administered may have reduced vasomotor tone and reduced coronary perfusion pressure.”

to which the authors respond:

“To paralyze and not sedate our patient would have been inhumane. Midazolam was used for sedation because it has less myocardial depressant effects than thiopental. Ketamine would have been the best choice in hindsight.”

We may never know how frequently cardiac arrest patients are aware during resuscitation, because few cardiac arrest patients live to tell the tale, however 2% of cardiac arrest survivors in the subtly-named AWARE study described visual awareness during cardiac arrest. In 2008, Bihari & Rajajee described CPRIC in the ICU and declare:

“While concerns about the adverse effects of sedative and analgesic medications in such a situation may have merit, it is worthwhile to consider that a patient in this situation is quite unlikely to survive despite maximal resuscitative efforts…Alleviating pain and suffering at this likely terminal stage should outweigh concerns about potential side effects.”

The incidence of CPR-induced consciousness seems to be increasing and at least one investigator is making it a clinical niche with three papers so far in press. The best of these is a registry study of 112 prehospital cases of CPRIC showing a 0.7% incidence, a weakly positive association between CPRIC and favorable patient outcomes, and a weakly negative association between the use of sedatives to treat CPRIC and favorable patient outcomes. A provider survey study described a prehospital scenario where “The patient was GCS 15 during CPR which was very unsettling for the crews involved. At one point the patient was begging us to stop as the CPR was hurting. He said ‘tell my family I love them and I’m ok with dying, please let me die.’”

Clinicians who care for cardiac arrest patients should be aware of–and have a plan for–CPRIC. Members of the resuscitation team may be alarmed by a patient who is conscious during chest compressions and should be reassured that this is a well-described phenomenon demonstrating the potential of high quality chest compressions and high quality cardiac arrest care to perfuse vital organs. As captured in the video, our patient was conscious during pulse checks (i.e. while chest compressions were paused), illustrating how perfusion pressures fall gradually following the cessation of cardiac output.

It seems inhumane to leave a patient awake while an artificial airway is in place and while the patient is receiving chest compressions, not to mention tube thoracostomy, pericardiocentesis, etc. Pound et al describe a patient so active during CPR that he was able to significantly interfere with resuscitative efforts. Most CPRIC authors recommend intra-arrest sedation with midazolam or ketamine; one group proposes a CPRIC sedation protocol.

After the decision was made with family to terminate resuscitation, our patient was allowed to emerge from ketamine dissociation to say goodbye to his loved ones while at least partially conscious. This emotionally charged circumstance has not been previously described but may merit further consideration as cardiac arrest care improves and CPR-induced consciousness becomes more common.

Thank you to the patient’s relatives and the clinicians who consented to the distribution of video footage for educational purposes.