The Emergency Department Admitting Team: A Crisis Response to an Unprecedented Surge of Critically Ill Patients During COVID-19

Maimonides Medical Center (MMC) is Brooklyn’s largest hospital, an academic quaternary care center with, in normal times, 711 total beds, 66 intensive care beds, and an Emergency Department that treats approximately 120,000 patients per year.

On March 9, the first patient with a novel coronavirus infection was admitted to MMC. At its peak, on April 9, there were 471 patients with confirmed or suspected COVID-19 admitted to the hospital, with 139 patients designated to be occupying a critical care bed and 184 patients receiving mechanical ventilation. On May 7, after 2 months of strict physical distancing across the city, the hospital discharged its 1000th COVID-19 patient, as the surge of coronavirus cases that is estimated to have killed 25,000 New Yorkers1 was drawing to a close.

From April 6 to May 3, in response to the rapidly-evolving approach to treatment of severe COVID-19 infection, and to accommodate an unprecedented demand for critical care resources at our institution, we implemented a novel patient care program, the Emergency Department Admitting Team (EDAT), which adapted intensive care paradigms to Emergency Department logistics, staffing, and flow. Every patient admitted to the EDAT was followed to the conclusion of their hospital course; the development of this unit and patient outcomes resulting from its execution are presented here.

In the last week of March and first week of April 2020, hospitals across New York City were overwhelmed with critically ill COVID-19 patients, many of whom had unprecedented oxygen requirements. Endotracheal intubation was the dominant treatment modality during the initial phase of the NYC surge,2-4 and ICU capacity was quickly saturated. Frontline providers pivoted to noninvasive oxygenation strategies,5-7 but these patients required a level of care exceeding the capabilities of a general medical ward. At the same time, emergency department (ED) arrivals for conditions not related to COVID-19 dropped precipitously.

In response, we determined that the safest way to care for critically ill COVID-19 patients who could not be adequately oxygenated on low-flow oxygen (i.e. conventional nasal cannula or face mask) but could be stabilized on noninvasive ventilation (NIV) or high-flow nasal cannula (HFNC), was that they should remain in the ED and cared for longitudinally by the ED team. Because of these patients’ rapidly evolving (and poorly understood) critical illness, holding them downstairs was tantamount to creating a makeshift intensive care unit in the ED.

Administrative logistics demanded that patients receiving ongoing care in the emergency department be formally admitted to the hospital; we were therefore enjoined to admit these patients to ourselves and therefore formed the Emergency Department Admitting Team. At our institution, Emergency Physicians are afforded admitting privileges which had not been exercised previously. A geographic space within the high acuity zone of the department was designated for EDAT patients, all staff entering the zone were required to don full personal protective equipment. Any patient requiring high acuity care not thought to be infected with coronavirus was cared for in a different area that had previously been a low acuity zone, but which was subsequently equipped for resuscitation.

The EDAT was staffed entirely by Emergency Medicine attendings, only one of whom was board-certified in both Emergency Medicine and Critical Care (C.K.S.), and Emergency Medicine residents, in 12 hour shifts. We scheduled providers in blocks of 2, 3, or 4 consecutive shifts (12 hours on, 12 hours off) to facilitate continuity of care. At its peak volume, the EDAT was staffed by 2 attendings and 3 residents per shift. Emergency nursing, technician, and clerical staffing was unchanged compared to usual staffing for the zone, with far higher patient:nurse ratios than allowable in a proper ICU, as all other critical care resources were engaged on the units and were not available to assist in the direct care of these patients.

The criterion for EDAT admission was HFNC therapy, which had been used on a smaller scale in our institution for several years. HFNC was in most cases set up by respiratory therapy. Patients who failed HFNC and required endotracheal intubation (ETI) were transferred to a conventional inpatient service; however many of these patients were delayed in their ascent upstairs and while physically located in the ED remained under the care of the EDAT. Patients who improved on HFNC and could be transitioned to low-flow oxygen were transferred to a lower acuity inpatient service for continued care.

During the study period, there were no established specific therapies for COVID-19. Treatment protocols changed rapidly and were devised by departmental and hospital consensus. The EDAT adopted a hybrid of intensive care and emergency department paradigms; for example, patients were evaluated and transfer of care occurred using a systems-based format, but the primary activity of the physician team was to reassess patients constantly by continuous rounding, as is typical in EM practice.

The focus of treatment for most patients was maintenance and titration of the HFNC, prone positioning, chest physiotherapy, and other forms of supportive care. Particular effort was required to keep family members, who were not allowed in the hospital for risk of contagion, apprised of their loved one’s status.

After admission to the EDAT, documentation was performed on the inpatient electronic health record (EHR), which at MMC is a different platform than the ED EHR. All patients admitted to the EDAT were identified on a daily report and their clinical course abstracted from the EHR onto a structured database by 2 research fellows and 7 emergency medicine residents. The study was approved by the MMC institutional review board.

 

 

From April 6 to May 3, 2020, 90 patients were admitted to the EDAT. Of these, 10 patients did not have curative goals of care (i.e. had DNR/DNI orders), 5 patients were transferred from an outside institution, and 6 were determined not to have COVID-19; these 21 patients were excluded from this analysis, as well as a single patient who at the time of this writing was still in ICU after over two months of mechanical ventilation and ECMO, leaving a cohort of 68 patients. All 10 DNR/DNI patients and all 5 transfer patients died; 4 of 6 non-COVID patients cared for by the EDAT died and 2 were discharged. The average number of patients admitted to the EDAT over the study period of 28 days was 11, with a maximum of 23 patients on April 12, 2020.

Results are presented in Table 1. The average age of the 68 patients treated on the EDAT was 65.6 years; 63% of patients were male. 19 patients (28%) were discharged from the hospital and 49 (72%) expired. Of the 49 patients that did not survive, 7 died in the emergency department, 15 died on the medical wards, and 27 died in the ICU. Discharged patients were on average 13 years younger than patients who expired. Hospital length of stay was similar between the two groups.

There were significant differences between the groups in the use of different forms of respiratory support, with discharged patients more likely to receive low-flow oxygen and expired patients more likely to be treated with mechanical ventilation; this likely reflects illness severity rather than negative or positive effects of the oxygenation modality. HFNC was strongly favored at our center over NIV in patients who could not be stabilized on low-flow oxygen, and HFNC use, the focus of EDAT therapy, was similar between the two groups.

Discharged patients were significantly more likely to be treated with convalescent plasma and tocilizumab, with expired patients more likely to be treated with hydroxychloroquine and remdesivir. Because the mortality among EDAT patients decreased in the last half of the study period (10 out of 19 discharged patients presented after April 21), and because therapy choices were often guided by illness severity among rapidly shifting trends in COVID-19 treatment (e.g. hydroxychloroquine fell out of favor), we do not draw causal inferences from these trends. Remdesivir was restricted to critically ill, intubated patients and could only be given via an experimental protocol. Other agents, also part of research protocols, were not similarly limited to intubated patients.

 

 

The surge of COVID-19 patients in New York City from late March to April 2020 imposed a crisis of emergency care, the full magnitude and impact of which will require years to measure and reckon with. The crisis was caused predominantly by a deficit in critical care capacity not experienced domestically in modern times, compounded by inadequate testing capability and scientific uncertainty around a novel disease. This uncertainty included a nearly complete absence of data to inform treatment decisions and extended to shifting theories of virus transmissibility and lethality, generating fears magnified by nationwide shortages of personal protective equipment.

The first wave of coronavirus arrivals were mostly stable patients with flu-like symptoms who requested diagnostic testing. During that early phase of the surge, the challenge for Emergency Medicine was to determine which patients required ancillary studies (including COVID-19 testing, which was usually not available) while maintaining the type of infectious isolation precautions customary in normal times. “Hot” and “cold” zones were set up, as well as detached screening/testing locations, and many ambulatory patients were assessed and released without ever entering the ED.

Community spread in early and mid-March advanced unchecked by the use of masks or physical distancing, mitigation strategies not yet embraced by the public. The natural history of the virus therefore quickly replaced the worried well with progressively ill patients who required escalating levels of respiratory support. The city entered lockdown on March 22, and the wide spectrum of illnesses typically seen by emergency clinicians was reduced to steadily worsening presentations of a single disease.

Based on the experience of the earliest outbreaks in China and Italy, emergency physicians adopted a strategy of intubate early, which stipulated that patients who were not stabilized by low-flow oxygen (nasal cannula less than 6 liters per minute) should be managed with intubation and mechanical ventilation.5 This strategy arose from the rapidly progressive oxygen requirements observed in the earliest days of the pandemic, as well as from concerns that noninvasive forms of advanced oxygenation–NIV and HFNC–posed an unacceptable risk of aerosolization of viral particles. However, preliminary data emerging from besieged hospitals in Asia and Europe showed high mortality in intubated patients.8-12 Furthermore, as the magnitude of disease prevalence came into view, it was clear that critical care resources would quickly be exhausted if intermediate oxygenation modalities were not deployed.

Providers across the city therefore moved to NIV and HFNC therapies in the hope that ICU resources would be conserved and patient outcomes would be improved.2,5 Unsedated patients were also able to participate in awake proning, which was demonstrated to improve oxygenation and (at least temporarily) prevent progression to intubation.13-15 These patients were initially admitted to general medicine wards; however, it was quickly learned that their dependence on oxygen was so profound, their disease so unpredictable, and their physiology so fragile that they could not be safely managed behind the closed doors of a typical inpatient unit.

Given the perceived harms of early intubation and the citywide shortage of critical care beds, the EDAT was created to make use of the only available venue to provide acceptable monitoring and treatment of the ongoing surge of patients with severe COVID-19. The team was developed to apply continuous intensive care within a framework designed for, and by clinicians trained in, episodic emergency care. EM attendings and residents were scheduled in shift blocks, with a single intensive care-trained emergency physician providing daily supervision, consultation, and administration. This allowed maximal continuity of patient care within an ED staffing model, as well as rapid reorientation to quickly shifting treatment principles.

EDAT providers contended with myriad challenges. Inpatient-type care relies on a skillset and mindset unlike the focused, compartmentalized attention required of emergency clinicians, and longitudinal management of critically ill patients demands mastery of an even more specialized expertise normally acquired in a 2-year fellowship.16 Usual hospital processes were constantly revised to accommodate repurposed spaces, services and personnel. Clinical testing and treatment protocols changed almost every day. Many critical supplies, especially respiratory equipment, were scarce or unavailable. Providers carried out their tasks using foreign ordering and documentation pathways within an EHR that had to be learned immediately and without training. Additionally, all staff worked with rapidly deployed, unfamiliar equipment, most notably recently acquired ventilators, in addition to novel devices and workflows to reduce viral contagion.17-19 The greatest challenge was the emotional toll of caring for scores of patients suffering from a disease for which there were no known effective treatments and who therefore often deteriorated despite all efforts.

EDAT treatment was centered on the use of noninvasive oxygenation modalities, with most patients managed using HFNC according to a departmental protocol. (Figure 1) Though every patient admitted to EDAT would have otherwise been intubated and placed on mechanical ventilation, and therefore those patients who returned to health may have been well served or even saved by a delayed intubation approach, most EDAT patients ultimately were intubated and the majority of these patients expired. Outcomes did improve over the course of the study period, which, in addition to decreased illness severity, may be the result of one or a combination of factors. As the surge continued, providers developed more comfort with profound hypoxemia and with the assiduous attention to continuous high-flow oxygen therapy that allowed intubation–especially the rushed intubation procedures resulting from patients accidentally coming off oxygen–to be delayed or avoided. Crystalloid infusions, therapeutic anticoagulation (as opposed to prophylaxis), dexmedetomidine (for anxiolysis), and chest physiotherapy were used more liberally over time. Perhaps most importantly, EDAT workflows that were completely new to the department and implemented without the opportunity for vetting or training became more functional and less prone to error as ED staff gained experience and expertise in managing a cohort of critically ill patients dependent on uninterrupted high-flow oxygen.

The optimal oxygenation technique for patients with severe COVID-19 remains controversial and informed by few experimental data.20-22 In our cohort of 68 patients treated according to a HFNC-first paradigm, 18 patients were successfully managed without mechanical ventilation and discharged. However, of the remaining 50 patients who were intubated, only 1 survived. Whether the alarmingly high mortality rates of intubated patients seen in this series (and across all of New York City23-27) during the surge was due to mistimed application of mechanical ventilation, due to other errors in treatments offered or treatments not offered, due to disease severity, or due to the mass casualty dynamics that prevented optimal critical care, is uncertain.

Reuben J. Strayer, MD

Cameron Kyle-Sidell, MD

Daniel Dove, MD

Ashley R. Davis, MD

Eitan Dickman, MD

John P. Marshall, MD

 

The authors acknowledge the following physicians for their assistance in data collection: Humaira Ali, Elizabeth Fruchter, Suman Gupta, Michelle Haimowitz, Tome Levy, Meagan Murphy, Eric Quinn, Kestrel Reopelle, David Shang, Maisa Siddique, Kazi Sumon, Sabena Vaswani and Jung Yum.

 We wish to further acknowledge and salute the Emergency Department staff of Maimonides Medical Center, all of whom confronted and overcame previously unimaginable challenges to providing care to a Brooklyn community struck by the worst public health disaster in a century.

Photographs courtesy of Duncan Grossman, DO. 

 

 

 

References

1. Weinberger DM, Chen J, Cohen T, et al. Estimation of Excess Deaths Associated With the COVID-19 Pandemic in the United States, March to May 2020 [published online ahead of print, 2020 Jul 1]. JAMA Intern Med. 2020;e203391. doi:10.1001/jamainternmed.2020.3391

2. Patel M, Chowdhury J, Mills N, Marron R, Gangemi A, Dorey-Stein Z, Yousef I, Tragesser L, Giurintano J, Gupta R, Rali P. ROX Index Predicts Intubation in Patients with COVID-19 Pneumonia and Moderate to Severe Hypoxemic Respiratory Failure Receiving High Flow Nasal Therapy. medRxiv. 2020 July 3.

3. Ziehr DR, Alladina J, Petri CR, et al. Respiratory Pathophysiology of Mechanically Ventilated Patients with COVID-19: A Cohort Study. Am J Respir Crit Care Med. 2020;201(12):1560-1564. doi:10.1164/rccm.202004-1163LE

4. Zareifopoulos N, Lagadinou M, Karela A, Platanaki C, Karantzogiannis G, Velissaris D. Management of COVID-19: the risks associated with treatment are clear, but the benefits remain uncertain. Monaldi Arch Chest Dis. 2020;90(2):10.4081/monaldi.2020.1342. Published 2020 May 5. doi:10.4081/monaldi.2020.1342

5. Rola P, Farkas J, Spiegel R, et al. Rethinking the early intubation paradigm of COVID-19: time to change gears?. Clin Exp Emerg Med. 2020;7(2):78-80. doi:10.15441/ceem.20.043

6. Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19 [published online ahead of print, 2020 May 15]. N Engl J Med. 2020;10.1056/NEJMcp2009575. doi:10.1056/NEJMcp2009575

7. Alhazzani W, Møller MH, Arabi YM, et al. Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19). Crit Care Med. 2020;48(6):e440-e469. doi:10.1097/CCM.0000000000004363

8. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study [published correction appears in Lancet Respir Med. 2020 Apr;8(4):e26]. Lancet Respir Med. 2020;8(5):475-481. doi:10.1016/S2213-2600(20)30079-5

9. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention [published online ahead of print, 2020 Feb 24]. JAMA. 2020;10.1001/jama.2020.2648. doi:10.1001/jama.2020.2648

10. Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy [published online ahead of print, 2020 Apr 6]. JAMA. 2020;323(16):1574-1581. doi:10.1001/jama.2020.5394

11. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study [published correction appears in Lancet. 2020 Mar 28;395(10229):1038]

12. Barrasa H, Rello J, Tejada S, et al. SARS-CoV-2 in Spanish Intensive Care Units: Early experience with 15-day survival in Vitoria [published online ahead of print, 2020 Apr 9]. Anaesth Crit Care Pain Med. 2020;S2352-5568(20)30064-3. doi:10.1016/j.accpm.2020.04.001

13. Thompson AE, Ranard BL, Wei Y, Jelic S. Prone Positioning in Awake, Nonintubated Patients With COVID-19 Hypoxemic Respiratory Failure [published online ahead of print, 2020 Jun 17]. JAMA Intern Med. 2020;e203030. doi:10.1001/jamainternmed.2020.3030

14. Coppo A, Bellani G, Winterton D, et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study [published online ahead of print, 2020 Jun 19]. Lancet Respir Med. 2020;S2213-2600(20)30268-X. doi:10.1016/S2213-2600(20)30268-X

15. Caputo ND, Strayer RJ, Levitan R. Early Self-Proning in Awake, Non-intubated Patients in the Emergency Department: A Single ED’s Experience During the COVID-19 Pandemic. Acad Emerg Med. 2020;27(5):375-378. doi:10.1111/acem.13994

16. Jayaprakash N, Pflaum-Carlson, Gardner-Gray J, et al. Critical Care Delivery Solutions in the Emergency Department: Evolving Models in Caring for ICU Boarders [published online ahead of print, 2020 Jul 8]. Ann Emerg Med. 2020;S0196-0644(20)30349-8. doi:10.1016/j.annemergmed.2020.05.007

17. Ponnappan KT, Sam AF, Tempe DK, Arora MK. Intubation box in the current pandemic – helps or hinders? [published online ahead of print, 2020 Jun 30]. Anaesth Crit Care Pain Med. 2020;S2352-5568(20)30127-2. doi:10.1016/j.accpm.2020.06.011

18. Malysz M, Dabrowski M, Böttiger BW, et al. Resuscitation of the patient with suspected/confirmed COVID-19 when wearing personal protective equipment: A randomized multicenter crossover simulation trial [published online ahead of print, 2020 May 18]. Cardiol J. 2020;10.5603/CJ.a2020.0068. doi:10.5603/CJ.a2020.0068

19. Lau YF, Wei W, Lau CP. Are stethoscopes risky in COVID-19?. Postgrad Med J. 2020;96(1137):431. doi:10.1136/postgradmedj-2020-138085

20. Tobin MJ, Laghi F, Jubran A. Caution about early intubation and mechanical ventilation in COVID-19. Ann Intensive Care. 2020;10(1):78. Published 2020 Jun 9. doi:10.1186/s13613-020-00692-6

21. Marini JJ, Gattinoni L. Management of COVID-19 Respiratory Distress [published online ahead of print, 2020 Apr 24]. JAMA. 2020;10.1001/jama.2020.6825. doi:10.1001/jama.2020.6825

22. Gattinoni L, Marini JJ, Busana M, Chiumello D, Camporota L. Spontaneous breathing, transpulmonary pressure and mathematical trickery. Ann Intensive Care. 2020;10(1):88. Published 2020 Jul 8. doi:10.1186/s13613-020-00708-1

23. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area [published online ahead of print, 2020 Apr 22] [published correction appears in doi: 10.1001/jama.2020.7681]. JAMA. 2020;323(20):2052-2059. doi:10.1001/jama.2020.6775

24. Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020;369:m1966. Published 2020 May 22. doi:10.1136/bmj.m1966

25. Goyal P, Choi JJ, Pinheiro LC, et al. Clinical Characteristics of Covid-19 in New York City. N Engl J Med. 2020;382(24):2372-2374. doi:10.1056/NEJMc2010419

26. Paranjpe I, Russak A, De Freitas JK, et al. Clinical Characteristics of Hospitalized Covid-19 Patients in New York City. Preprint. medRxiv. 2020;2020.04.19.20062117. Published 2020 Apr 23. doi:10.1101/2020.04.19.20062117

27. Gayam V, Chobufo MD, Merghani MA, Lamichanne S, Garlapati PR, Adler MK. Clinical characteristics and predictors of mortality in African-Americans with COVID-19 from an inner-city community teaching hospital in New York [published online ahead of print, 2020 Jul 16]. J Med Virol. 2020;10.1002/jmv.26306. doi:10.1002/jmv.26306

A Mass Casualty In Slow Motion: Emergency Medicine During the COVID-19 Surge in New York City

 

The first time I really took notice of coronavirus was when a few providers started wearing masks during their shifts. This was in mid-February when the virus was a Wuhan problem, and we were screening people with travel questions. If you weren’t recently in Hubei Province, weren’t in contact with someone recently in Hubei Province, and weren’t in contact with someone known to have coronavirus, you were deemed to not have coronavirus. If you screened positive on any of those criteria, we got on the phone with our city department of health, and if they agreed, they coordinated testing with Atlanta; at that time only the CDC had a diagnostic test for SARS-CoV-2. I asked my colleague Matt why he was wearing a mask. His response: You don’t think it’s coming here?

I’m pretty sure I hadn’t contemplated that question, until that moment. Meanwhile, our hospital administration was discouraging us from wearing masks, because they are needed for surgeries, and because it presents badly. Meanwhile, boxes of masks started disappearing. 

It wasn’t long after that, early March, when the well patients started coming in, mostly with fever but also chest pain, gastrointestinal symptoms, fatigue, and of course shortness of breath. Most of them were doing fine, ambulatory. They wanted to be tested for coronavirus. During this period we had some tests, then we had no tests, then we had tests, then no tests. We set up a “COVID clinic” across the street from the ED to keep these patients away from the department and process them quickly. Almost all of them were discharged home, with or without a test.

A small number of these early patients were sicker, and needed oxygen, so they had to be admitted. We started to notice alarmingly low saturations, much lower than expected for their clinical condition. We were doing a lot of chest xrays and labs, and some chest CTs. Nearly all these chest CTs showed bilateral ground glass opacities. COVID pneumonia. There was no treatment for COVID pneumonia, but there was a suggestion that hydroxychloroquine was effective, so we treated everyone with hydroxychloroquine. These patients were put in isolation rooms, which quickly filled up throughout the hospital, so they were boarding in the ED, waiting for an iso room.

It was becoming clear that circumstances in Italy were dire, and Italy isn’t China, Italy is across a much smaller ocean. NYC hospital administrators began to grasp the magnitude of the problem and were furiously trying to increase capacity. Elective surgeries were canceled and all the PACUs became ICUs, as did the ORs, then the cafeterias. Tents started going up outside the hospital. The first of three refrigerated trucks arrived. 

We separated the ED into cold and hot zones. In the hot zone, we were wearing N95s. Providers who had contact with patients who were found to be COVID+ were quarantined for 14 days. This seems so quaint in retrospect.

The arriving patients started getting sicker. The paradigm at the time was that if the patient was not stabilized with low-flow oxygen (6 liters/min nasal cannula),  they should be intubated. This was based on the notion that these patients would all end up requiring intubation anyway, and noninvasive high-flow oxygenation strategies such as high flow nasal cannula (HFNC) and NIV (CPAP/BiPAP) would aerosolize virus, infecting providers and other patients. We had never seen this disease before, so we accepted the intubate early paradigm, and sent dozens of intubated patients to the ICU in the first days of the surge, at least five times as many ICU admissions as usual.

By mid-March, we were practicing in disaster mode, our threshold to admit went way up. We stopped doing tests on patients who obviously had COVID but were ok–if you didn’t need oxygen, you went home, come back if you can’t breathe. At this point everyone in the ED is wearing cap, goggles, N95, surgical mask, gown and gloves their entire shift, regardless of where they were stationed in the ED. There were still nominally hot and cold zones but we all knew that was pointless because everyone had COVID, which we were diagnosing primarily by CT. Every patient with fever and respiratory symptoms had peripheral ground glass opacities, but, as time went on, every patient regardless of their symptoms had peripheral ground glass opacities. And we were doing CT chest on a lot of patients, because the upstairs teams for a while thought they could separate the COVID from the not, but then some non-COVID patients who came in with, for example, appendicitis, turned out to have COVID. And so we were asked to start doing a lot more CT chests, and they all showed COVID. I saw a middle aged man who was on mile 40 of a 60 mile bicycle ride, came in in full spandex after getting hit by a car, fractured femur. No chest complaints, fever, nothing. Was on a 60 mile bike ride. CT chest: peripheral ground glass opacities. That was when I realized how prevalent COVID was in New York City. On March 20, Governor Cuomo announced that starting two days later, March 22, New York State would go on lockdown.

Health care providers started getting sick with COVID. One of our docs, a healthy, active woman in her 30s, who intubated 6 patients in one shift, ended up in the ICU (she went home, is doing ok now). The PPE shortage captured the attention of the entire country. We had enough PPE for everyone to use one set of PPE per shift; this was of course PPE designed to be discarded after a single patient encounter. It is very unpleasant to wear PPE for an entire shift. It’s hard to breathe in a mask, it’s a pain to eat or drink or pee so you are less likely to do any of those things. Nobody can hear anyone so everyone’s shouting and misunderstanding, and of course the pressure sore on the bridge of your nose, a painful badge of honor.

On March 27 I retweeted my colleague Cameron’s video showing a pulse ox saturation of 44% with otherwise normal vitals. I suggested, “Consider withholding intubation in hypoxic patients who are otherwise OK.” Some folks who had noticed the same thing chimed in in agreement, but most of the replies were skeptical or disparaging. Over the next days, however, scores of providers broadcast similar findings, including another one of my colleagues, Eric, who photographed a woman texting comfortably with a saturation of 54%. Enter the term happy hypoxemic, and within a week, no one doubted that this was happening, that this was some strange feature of COVID. This was when we, as a community, started to question the early intubation strategy, especially given the outcomes of intubated patients emerging from China and Italy. We began to see intubation as something to be avoided until unequivocally required, and started using HFNC and NIV to manage critically ill COVID patients, despite the aerosolization concerns. 

That said, everyone was freaking out about aerosolization concerns. At least 100 aerosol-responsible intubation checklists were unleashed onto the world. The intubation box was born, and will hopefully soon die. Some hospitals allowed HFNC but not NIV, some hospitals allowed NIV but not HFNC. Some hospitals allowed neither, so everyone in those shops got intubated.

Everyone was freaking out about cardiac arrest. Chest compressions and bag mask ventilation were thought to be high risk for aerosolization, and since we were learning from Italy and China that so many who got intubated for COVID died, some in the EM community suggested that all patients who arrived to the ED in cardiac arrest should be immediately pronounced without resuscitation attempts. Fortunately this solution did not carry the day, and we developed techniques for balancing our responsibility to patients and our own safety. Our protocol is to halt chest compressions and rescue ventilation as soon as EMS arrives, until two fully-PPE-donned providers place an LMA attached to a viral filter; cardiac arrest care can then proceed as usual.

Everyone was freaking out about ventilators. Every day the media came up with some way to make a story out of physicians deciding who lives and dies because we don’t have enough ventilators, even though no hospital actually ran out of ventilators. I was asked to write the institution’s ventilator allocation policy; we didn’t need it and I don’t think anyone ever read it. We all had to learn to use a variety of newly acquired ventilators, and ventilators are tricky.

Everyone was lionizing healthcare workers, who, while the rest of the country was learning how to bake bread on lockdown, were going to work in a lake of coronavirus, putting themselves in harm’s way to care for the severely afflicted. Every media outlet was desperate for any frontline doc to tell them how terrible the situation is, and how terrible their lives are. Nevermind that putting themselves in harm’s way is what firefighters and police do every day (for much less money and esteem), nevermind that healthcare workers have a job and continued income while so many others were suddenly in dire financial straits, nevermind that being trapped at home feeling useless is for lots of folks harder than going in to work, even when your work is more challenging than usual. I noticed that shifts that were vacated (generally for providers getting sick) were immediately snatched up, much faster than usual. Some of this was camaraderie in a disaster, but some of it was: if I’m not at work, I’m trapped at home with my family, I’d rather be at work. Meanwhile, at 7p every day in NYC, everyone claps and celebrates healthcare heroes. I think the focus of attention shifted a little too much to healthcare heroes.

I did appreciate getting messages (and cookies, and brisket) from 100 people I hadn’t heard from in ages. 

Well patients stopped coming to the ED, and sick patients too. Strokes, MIs, opioid overdoses, mostly disappeared. It’s distressing to think about what happened to them.

In the last week of March, the emergency department became a place familiar only to those who do battlefield medicine. The census was lower than usual, but every patient who presented was extremely sick. There were no ICU beds left in the city, so critically ill patients started accumulating in the ED. And were they ever critically ill–these patients had oxygen requirements we had never seen before. They came in saturating in the 50s, we put them on HFNC and their sats went up, but as soon as the cannula fell off, the saturation would drop down to nothing, in seconds. We then understood why everyone was getting intubated in China and Italy.

The emergency department was now a huge, open ICU, filled with patients who were either intubated or on HFNC/NIV, and the patients on HFNC/NIV required more intensive care than the intubated patients, because they’re awake. They turn to one side and the cannula falls off, causing a sudden emergency. They need to use the restroom. They want to talk to their families, who are not allowed in the hospital. The ICU teams were overwhelmed upstairs and in fact all the doctors in the hospital were now repurposed to intensive care, with orthopedic surgeons adjusting vents. So we in the ED were on our own managing a sea of critically ill patients, and we had to pretend to be intensivists too. 

We learned that we could improve oxygenation by having these patients flip on their bellies. Awake proning was born, and a few days and some thousands of tweets later, everyone was awake proning their patients. 

The patients who seemed stable enough to go to a non-ICU setting upstairs often turned out to not be. Code blues were called overhead seemingly every 30 minutes. We learned that the HFNC/NIV patients simply could not be managed on wards behind closed doors, and the ICUs could only accommodate intubated patients, so we stopped admitting the HFNC/NIV patients. We formed our own “ED Admitting Team” and admitted the patients to ourselves, they stayed downstairs and we just watched them as closely as we could, never knowing when to intubate them. Some of these patients after many days on HFNC/NIV could be downgraded to low-flow oxygen and admitted safely, but many got intubated. One young man was prone on HFNC on an ED stretcher for 12 days, and he never turned the corner. We pulled the trigger and intubated him, he went upstairs and was immediately put on ECMO. He was with us for 12 days, we all got to know him and were collectively heartbroken to send him to the ICU on a vent.

There was a period of a couple weeks where the demand for intensive care resources so exceeded supply that the shifts felt like walking through a fog, moving from one dying patient to the next. The absence of any scientific guidance made us feel and behave like helpless homeopaths. We had no effective therapies so we threw all sorts of likely ineffective therapies (azithromycin, hydroxychloroquine, zinc, vitamin C, steroids, nitric oxide, prostacyclin, convalescent plasma, remdesivir, tocilizumab) at them. No one in the world knew when these patients needed to be intubated or how to manage the vent once they were intubated. Saturations in the 70s felt normal, pronouncing patients dead proceeded like a drumbeat, and there were moments when it perversely felt like a relief. Perhaps because we had never felt like we could do so little for so many who needed so much, there were moments when it seemed better to be dead than be a dying patient in a pandemic-overwhelmed hospital with your loved ones not allowed to visit, your care coordinated by doctors powerless to stop the disease laying waste to your lungs.

On April 11 I was much more tired than usual; the next day I was on shift and developed a pounding headache, I never get headaches. When I got home late in the evening I felt awful and that was when I realized. The next day was like a truck hit me. Sweats, chills, nausea, no appetite, no energy, aching all over. I told my boss I had coronavirus. My boss said you need to come in and get tested. I said why, I know I have coronavirus, I feel like shit, I don’t want to come in and get tested. He said you need to come in and get tested. I went in and got tested. Days #4 and #5 were the worst. I barely got out of bed. Constant high fevers, debilitating headaches, dizzy whenever I tried to stand up. I ate nothing. But the worst part was the uncertainty about how things would go over the next week; lots of healthy young healthcare workers were getting very sick and I’ve seen more than a few people my age killed by covid. My test came back positive. Things were a little bit dark. I was anxious and miserable. On day #6 I started to feel a bit better, and I very slowly improved over another week, until I could do my usual activities again. It was the sickest I’ve ever been, but no complaints, I feel fortunate. 

The surge abated in mid-April, but the arrivals numbers remained very low, everyone in the community (rightfully) scared to come to the hospital. Many of the admitted patients were discharged, and many died. Most of the ED patients went upstairs. 

Now the department is slow. There is still coronavirus, lots of people dying of coronavirus upstairs, and still people dying of coronavirus downstairs, and we expect this to continue for many months, but now we can handle the volume. And we have a lot more experience managing COVID, though still very little science to guide us.

The countrywide lockdown is a mitigation strategy designed to flatten the curve so that hospitals aren’t overwhelmed and so we can transition to a containment strategy which requires the development of a robust test/trace/isolate infrastructure. Americans were frightened by what they saw in NYC, so they isolated much better than anyone predicted, and we flattened the curve better than anyone predicted. But a sophisticated and committed federal government response is needed to quickly build a test/trace/isolate infrastructure, and that hasn’t happened and looks like it’s not going to happen.  So most states, including New York, are nowhere near ready to come off of lockdown, from a public health perspective. But the public won’t tolerate this much longer, so we’re going to open up, and new cases/deaths will start to rise. As long as most of the dead are old, and we don’t see conditions like the mass casualty that was visited upon New York City for three weeks in March and April, I think most americans will trade a steady stream of deaths for an open economy. And that’s what I think will happen, until we get a vaccine, a cure, or herd immunity. I hope this is a once in a lifetime event. For untold hundreds of thousands, it definitely will be.

 

Thanks to Lois Isaksen, Michael Turchiano, Nick Schwartz, Josh Schiller, Matt Friedman, Eric Lee and Ram Parekh for their review and suggestions. 

Illustration by Lian Chang

 

 

 

 

3 Weeks of Coronavirus in New York City

NYC at this moment (April 6, 2020) seems to have crested with a wave of very sick patients, many many of them requiring intubation or other aggressive forms of oxygenation. The patients are arriving more slowly in recent days, but arrivals are often very ill. Most of us have watched many patients–not all of them old–deteriorate and die, sometimes very quickly, and this is psychologically traumatic. I find it particularly demoralizing to manage so many patients who are succumbing to a disease that is so poorly understood, and where all our treatment strategies are currently based on anecdote and theory, which is just slightly better than being based on nothing. We desperately need experimental data to determine what works. It is very difficult to deploy a serious research effort when the clinicians are getting crushed and the research teams are on lockdown, but we need to do better. We don’t have time for the usual publication-focused machinery of research to churn out papers in 6 months, we need trials now, every covid patient should be enrolled in a trial so we can learn something about how to treat this awful disease.

So all of what follows is based on opinion and consensus, some observational data, because experimental data does not yet exist. It would therefore not surprise me if much of it is ultimately demonstrated to be entirely wrong. 

 

Assessment of Well Patients

Early on, there was an emphasis on COVID testing, ancillary testing (e.g. CXR, CT, labs), and discharge guidelines often based on oxygen saturation. As the epidemic has evolved, COVID testing has disappeared and the rest has become less useful. Currently, I think most of us have adopted a strategy where patients who present with COVID symptoms, but are able to walk around without oxygen, are assumed to have COVID and discharged with isolation precautions and indications for return. It is expected that some of them will return requiring admission. My main concern is not that we’re inappropriately discharging COVID patients who bounce back–it’s essential to keep people out of the hospital right now until they absolutely need admission–rather that we’re attributing every symptom to COVID and not adequately working up other causes of the patient’s symptoms. That said, it is astounding how many patients have classic COVID symptoms, it really does seem that everyone in the city has this disease. The positive test numbers you hear reported in the media are useless, we’re not testing anyone. Focus on admissions and deaths to get some sense of disease prevalence in a region.

If we had access to reliable and rapid coronavirus testing, we could have done much more, from a public health perspective, than discharge these patients with instructions to isolate, which is impossible for many folks to do in their homes. I hope such testing will become available in regions that aren’t already saturated with coronavirus, before they become saturated with coronavirus.

 

The ‘intubate early’ paradigm, where patients who “fail” low flow oxygen (e.g. 6 L/min nasal cannula) are intubated and mechanically ventilated, has been abandoned by most centers, because intubated patients with COVID lung disease are doing very poorly, and while this may be the disease and not the mechanical ventilation, most of us believe that intubation is to be avoided until unequivocally required. Also, a low threshold to intubate further strains already-strained hospital resources.

What should be the trigger for intubation is a very difficult question right now, but saturation should not be used in isolation. Reasonable markers are respiratory distress (not simply tachypnea), altered mentation, and rising CO2. In general, when not sure, wait, augment noninvasive therapies, and reassess. This is the converse of the usual EM paradigm, which is when you’re not sure whether or not to intubate, intubate.

Here is the guidance we have come up with based on Gattinoni’s two-phase theory of disease. Many are reporting much better results using APRV instead of conventional modes of ventilation.

 

Noninvasive oxygenation therapies 

  1. Proning. This should be done for all patients with COVID lung disease sick enough to be admitted to the hospital, regardless of oxygenation therapy. A “proning” team (e.g. providers otherwise idled by societal lockdown) can round on all the patients to prone them, or turn them on one side or another, which seems to improve oxygenation for many patients. 
  2. Encouragement of deep breathing. Many COVID patients take very rapid but very shallow breaths. We have also noticed that many COVID patients have painful breathing, and some present with a complaint of pain instead of dyspnea. Incentive spirometry, with or without treatment with opioids, may be of benefit.
  3. High flow nasal cannula. Consensus seems to be to start with high FiO2 and low flow rate, increase flow rate as needed. Cover with surgical mask to reduce aerosolization.
  4. Noninvasive ventilation. Again it is the high concentration of oxygen that seems to be of value here rather than the pressure, so some have advocated for CPAP with a low pressure, FiO2 100% as an initial approach. Use viral filter at the level of the mask to reduce aerosolization. 

To the extent that you can isolate or cohort patients on HFNC/NIV, do so. As the epidemic worsens, your ability to do this diminishes. 

Pulmonary hypertension seems to play an important role in very ill COVID patients and there is some enthusiasm for using pulmonary vasodilators like inhaled nitric oxide or prostacyclin.

 

Anticoagulation

Prothrombosis is one of the many not-yet-understood but repeatedly observed aspects of this disease. Many institutions are moving to aggressive anticoagulation practices in COVID patients, based on trending d-dimers. At a minimum, everyone admitted should probably be prophylaxed. I’ve heard two reports of COVID patients doing very poorly, not stable for CT, treated with lysis, to immediate improvement. Was it PE? Was it diffuse microthrombosis? Was it something else? Was it coincidence? We have no idea.

 

Cardiac Arrest

All sorts of chitchat on who should be resuscitated and how. If a patient is already intubated and receiving maximal therapies for COVID, and deteriorates and arrests, it does not seem appropriate to pursue further resuscitation, assuming no immediately reversible cause (e.g. ventilator disconnection/obstruction) is found. Undifferentiated patients arriving to the ED in cardiac arrest should, in my opinion, be managed like a patient arriving in cardiac arrest in normal times, with one exception: the patient should be assumed to have COVID, and appropriate measures should be taken to protect staff and other patients from aerosols generated during intubation and chest compressions. See this impossibly well-produced video.

 

Ventilator Allocation

Despite the media clickbait frenzy on this topic, to my knowledge there has been no need for any hospital to go on an allocation protocol, but that time may come. You do not want that time to come without a protocol that you have established and vetted. Here is one protocol.

 

Emergency Department and Hospital Flow

At first, departments try to separate into hot and cold zones, but as the prevalence of COVID increases in the community, most of us have noticed that everyone presenting for any reason has evidence of COVID (e.g. the man who was in the midst of a 40 mile bicycle ride gets hit by a car, breaks his leg, has no other symptoms, but CT shows lungs full of COVID, all of us have seen this repeatedly). So, at least in NYC, the entire ED becomes a COVID zone.

I have nothing to add to the national referendum on PPE other than to say that wearing PPE for the duration of an ED shift is difficult, and I think every ED worker in the city is now wearing a single full PPE getup for their entire shift, regardless of where they are in the department. Think about where providers are going to don/doff PPE, where providers are going to store PPE if it has to be reused. Where in the department/hospital/offices PPE will be allowed, and not allowed. For example, is PPE allowed in the breakroom? What will you do with the food that is donated by the community, that your providers will really want to eat? Seems like a trivial problem but it isn’t, frontline gotta eat. Useful to designate a (nonclinical, probably) person to manage food and PPE donations.

Non-COVID ED visits have dropped off precipitously, no one has any idea where all the strokes, heart attacks, intoxicated and withdrawing patients are. However the fraction of patients requiring admission has skyrocketed; the majority of people who arrive to the ED now require significant oxygen support and admission. 

Many if not most of these patients are on advanced oxygen therapies (HFNC, NIV, or MV) but most hospitals do not have even close to the personnel or structural resources required to optimally care for this volume of ICU/Stepdown patients. This is perhaps the greatest struggle in the latest stage of the epidemic in NYC: providing intensive care to 10x the number of patients the hospital is set up for. Many ED’s at the moment are functioning as huge ICUs, caring for enormous numbers of critically ill patients awaiting inpatient beds. It’s even worse upstairs, because standard medical wards are now also ICUs/Stepdowns filled with patients who have very high oxygen requirements, but unlike the ED, these patients are behind closed doors and wards are not resourced to provide the level of monitoring required, and if someone knocks off their NIV mask or HFNC, they can run into trouble very quickly. The number of “Anesthesia, STAT” calls to ward beds is a jarring reflection of the grim conditions. Plan to augment ward staff (physicians, nurses, technicians, anyone) to keep more eyes on these patients. 

Because the arrivals volume is so low, very few ED staff are needed to do emergency medicine, and many of us are repurposed to provide ICU/Stepdown inpatient care to the admitted patients. It would be wise to plan for this transition, because it’s very disorienting, especially when you’re trying to do it in a Tyvek suit for 10 hours. Many units are attempting to leverage other services that are inactive during societal lockdown, and there is a role for just about everyone: The patients, if nothing else (and there is a lot else) need food, water, hygiene, their home meds, an update on their condition (if they’re conscious), someone to talk to their families who are not allowed inside. Any healthcare provider can do this. In one NYC hospital, the surgical service has taken over an entire wing of the ED filled with ICU/Stepdown patients and is just running it, caring for these patients as though they’re in the SICU, because they might as well be. It is an awesome demonstration of our shared purpose and the petty illogic of our usual balkanized culture. People are ready to step up. Utilize them.

COVID-19 Data Sharing Project

Use the links below to access anonymized patient-level data for patients seen in our COVID-19 ICU. This data is updated in near real time.

Because New York City has been seriously affected by COVID-19 before most other cities, we have gained experience in managing many of these patients before severe cases have accumulated in other regions. This database aims to inform clinicians who haven’t yet cared for severely ill COVID-19 patients, but will, soon.

First sheet in each patient notebook is a summary; following sheets correspond to subsequent hospital days. Patients who are discharged or deceased are marked as such, unmarked patients are currently admitted. More patients are added daily.

Credits: Daniel Dove, Ashley R. Davis, Aneri Sakhpara, Cameron Kyle-Sidell.

 

Patient 1 (discharged)

Patient 2 (discharged)

Patient 3 (discharged)

Patient 4 (discharged)

Patient 5 (deceased)

Patient 6 (deceased)

Patient 7 (deceased)

Patient 8 (discharged)

Patient 9 (deceased)

Patient 10 (discharged)

Patient 11 (discharged)

Patient 12 (discharged)

Patient 13 (deceased)

Patient 14 (deceased)

Patient 15 (deceased)

Patient 16 (deceased)

Patient 17 (deceased)

Patient 18 (discharged)

Patient 19 (discharged)

Patient 20 (discharged)

Patient 21 (discharged)

Patient 22 (deceased)

Patient 23 (discharged)

Patient 24 (deceased)

Patient 25 (deceased)

Patient 26 (deceased)

 

[4/14/2020] Given the profusion of descriptive data now becoming available, we have ceased enrollment of this cohort at 26 patients. We will continue to update all these patents until disposition.

[7/23/2020] I presented on our ED Admitting Team (not the patients reported on on this page, but a similar cohort that was cared for downstairs, in the ED) at our hospital weekly COVID rounds. 20 minute presentation, followed by 20 minutes of questions/comments.